Cycles in the Graph of Overlapping Permutations Avoiding Barred Patterns

نویسندگان

  • Guizhi Qin
  • Sherry H. F. Yan
چکیده

As a variation of De Bruijn graphs on strings of symbols, the graph of overlapping permutations has a directed edge π(1)π(2) . . . π(n+1) from the standardization of π(1)π(2) . . . π(n) to the standardization of π(2)π(3) . . . π(n + 1). In this paper, we consider the enumeration of d-cycles in the subgraph of overlapping (231, 41̄32)avoiding permutations. To this end, we introduce the notions of marked Motzkin paths and marked Riordan paths, where a marked Motzkin (resp. Riordan) path is a Motzkin (resp. Riordan) path in which exactly one step before the leftmost return point is marked. We show that the number of closed walks of length d in the subgraph of overlapping (231, 41̄32)-avoiding permutations are closely related to the number of marked Motzkin paths and that of marked Riordan paths. By establishing bijections, we get the enumerations of marked Motzkin paths and marked Riordan paths. As a corollary, we provide bijective proofs of two identities involving Catalan numbers in answer to the problem posed by Ehrenborg, Kitaev and Steingŕımsson. Moreover, we get the enumerations of (231, 41̄32)-avoiding affine permutations and (312, 324̄1)-avoiding affine permutations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Number of cycles in the graph of 312-avoiding permutations

The graph of overlapping permutations is defined in a way analogous to the De Bruijn graph on strings of symbols. However, instead of requiring the tail of one permutation to equal the head of another for them to be connected by an edge, we require that the head and tail in question have their letters appear in the same order of size. We give a formula for the number of cycles of length d in th...

متن کامل

Enumeration Schemes for Permutations Avoiding Barred Patterns

We give the first comprehensive collection of enumeration results for permutations that avoid barred patterns of length 6 4. We then use the method of prefix enumeration schemes to find recurrences counting permutations that avoid a barred pattern of length > 4 or a set of barred patterns.

متن کامل

Classical Sequences Revisited with Permutations Avoiding Dotted Pattern

Inspired by the definition of the barred pattern-avoiding permutation, we introduce the new concept of dotted pattern for permutations. We investigate permutations classes avoiding dotted patterns of length at most 3, possibly along with other classical patterns. We deduce some enumerating results which allow us to exhibit new families of permutations counted by the classical sequences: 2n, Cat...

متن کامل

Generalised Pattern Avoidance

Recently, Babson and Steingŕımsson have introduced generalised permutation patterns that allow the requirement that two adjacent letters in a pattern must be adjacent in the permutation. We will consider pattern avoidance for such patterns, and give a complete solution for the number of permutations avoiding any single pattern of length three with exactly one adjacent pair of letters. For eight...

متن کامل

Restricted Dumont permutations, Dyck paths, and noncrossing partitions

We complete the enumeration of Dumont permutations of the second kind avoiding a pattern of length 4 which is itself a Dumont permutation of the second kind. We also consider some combinatorial statistics on Dumont permutations avoiding certain patterns of length 3 and 4 and give a natural bijection between 3142-avoiding Dumont permutations of the second kind and noncrossing partitions that use...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2016